The successful candidate will apply sophisticated machine learning methods to banking applications including risk assessment, trading models, customer relationship management, and pricing models. Machine learning techniques will include feed-forward, recurrent, recursive and convolutional neural networks, maximum entropy models, and other algorithms related to time series analysis and supervised learning.
Responsibilities
- Develop scalable tools leveraging machine learning and deep learning models to solve real-world problems in areas such as Speech Recognition, Natural Language Processing and Time Series predictions.
- Collaborate with all of JPMorgan Chase's lines of businesses, such as Investment Bank, Commercial Bank, and Asset Management.
- Lead your own project. Suggest, collect and synthesize requirements. Create an effective roadmap towards the deployment of a production-level machine learning application.
- MS or PhD in a quantitative discipline, e.g. Computer Science, Mathematics, Operations Research, Data Science. If BS only, 2-5 years of hands-on experience developing machine learning models.
- Experience in Deep Learning: DNN, CNN, RNN/LSTM, GAN or other auto encoder (AE).
- Ability to develop and debug in Python, Java, C or C++. Proficient in git version control. R and Matlab are also relevant.
- Extensive experience with machine learning APIs and computational packages (TensorFlow, Theano, PyTorch, Keras, Scikit-Learn, NumPy, SciPy, Pandas, statsmodels).
- Familiarity with basic data table operations (SQL, Hive, etc.)
- Should be able to work both individually and collaboratively in teams, in order to achieve project goals.
- Must be curious, hardworking and detail-oriented, and motivated by complex analytical problems.
- Must have the ability to design or evaluate intrinsic and extrinsic metrics of your models performance which are aligned with business goals.
- Must be able to effectively communicate technical concepts and results to both technical and business audiences.
Beneficial Skills
- Solid time series analysis, speech recognition, NLP or financial engineering background.
- Strong background in Mathematics and Statistics.
- Published research in areas of Machine Learning, Deep Learning or Reinforcement Learning at a major conference or journal.
- Experience with GPUs and cloud-based training of deep neural networks.
- Contribution to open-source projects on Machine Learning.
- Knowledge in Reinforcement Learning or Meta Learning.
- Experience with big-data technologies such as Hadoop, Spark, SparkML, etc.
by via developer jobs - Stack Overflow
No comments:
Post a Comment